Mondadori Store

Trova Mondadori Store

Benvenuto
Accedi o registrati

lista preferiti

Per utilizzare la funzione prodotti desiderati devi accedere o registrarti

Vai al carrello
 prodotti nel carrello

Totale  articoli

0,00 € IVA Inclusa

Design and Control of Highly Conductive Single-Molecule Junctions - Satoshi Kaneko
Design and Control of Highly Conductive Single-Molecule Junctions - Satoshi Kaneko

Design and Control of Highly Conductive Single-Molecule Junctions

Satoshi Kaneko
pubblicato da Springer Nature Singapore

Prezzo online:
84,23
93,59
-10 %
93,59

This thesis describes improvements to and control of the electrical conductance in single-molecule junctions (SMJs), which have potential applications in molecular electronics, with a focus on the bonding between the metal and molecule. In order to improve the electrical conductance, the orbital of the molecule is directly bonded to the metal orbital, because anchoring groups, which were typically used in other studies to bind molecule with metal electrodes, became resistive spacers. Using this direct -binding, the author has successfully demonstrated highly conductive SMJs involving benzene, endohedral metallofullerene Ce@C82, and nitrogen. Subsequently, the author investigated control of the electrical conductance of SMJs using pyrazine. The nitrogen atom in the -conjugated system of pyrazine was expected to function as an anchoring point, and two bonding states were expected. One originates primarily from the orbital, while the other originates primarily from an n stateof the nitrogen. Measurements of conductance and dI/dV spectra coupled with theoretical calculations revealed that the pyrazine SMJ has bistable conductance states, in which the pyrazine axis is either tilted or parallel with respect to the junction axis. The bistable states were switched by changing the gap size between the metal electrodes using an external force. Notably, it is difficult to change the electrical properties of bulk-state materials using mechanical force. The findings reveal that the electron transport properties of a SMJ can be controlled by designing a proper metalmolecule interface, which has considerable potential for molecular electronics. Moreover, this thesis will serve as a guideline for every step of SMJ research: design, fabrication, evaluation, and control.

Dettagli down

Generi Scienza e Tecnica » Chimica » Fisica » Ingegneria e Tecnologia » Tecnologia, Altri titoli » Ingegneria meccanica e dei materiali

Editore Springer Nature Singapore

Formato Ebook con Adobe DRM

Pubblicato 04/04/2017

Lingua Inglese

EAN-13 9789811044120

0 recensioni dei lettori  media voto 0  su  5

Scrivi una recensione per "Design and Control of Highly Conductive Single-Molecule Junctions"

Design and Control of Highly Conductive Single-Molecule Junctions
 

Accedi o Registrati  per aggiungere una recensione

usa questo box per dare una valutazione all'articolo: leggi le linee guida
torna su Torna in cima