Mondadori Store

Trova Mondadori Store

Accedi o registrati

lista preferiti

Per utilizzare la funzione prodotti desiderati devi accedere o registrarti

Vai al carrello
 prodotti nel carrello

Totale  articoli

0,00 € IVA Inclusa

Probabilistic Graphical Models

Daphne Koller - Nir Friedman
pubblicato da MIT Press

Prezzo online:
-20 %

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.

Most tasks require a person or an automated system to reasonto reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.

Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.


Generi Informatica e Web » Linguaggi e Applicazioni » Scienza dei calcolatori

Editore Mit Press

Formato Ebook con Adobe DRM

Pubblicato 31/07/2009

Lingua Inglese

EAN-13 9780262258357

0 recensioni dei lettori  media voto 0  su  5

Scrivi una recensione per "Probabilistic Graphical Models"

Probabilistic Graphical Models

Accedi o Registrati  per aggiungere una recensione

usa questo box per dare una valutazione all'articolo: leggi le linee guida
torna su Torna in cima