Mondadori Store

Trova Mondadori Store

Benvenuto
Accedi o registrati

lista preferiti

Per utilizzare la funzione prodotti desiderati devi accedere o registrarti

Vai al carrello
 prodotti nel carrello

Totale  articoli

0,00 € IVA Inclusa

ELGAMAL CRYPTOSYSTEM KEY GENERATION, ENCRYPTION, DECRYPTION, AND DIGITAL SIGNATURES: LEARN BY EXAMPLES WITH PYTHON AND TKINTER

Vivian Siahaan - Rismon Hasiholan Sianipar
pubblicato da BALIGE PUBLISHING

Prezzo online:
7,54

This book presents an interactive Python application designed to showcase the ElGamal encryption algorithm through a user-friendly Tkinter graphical user interface (GUI). At its heart, the application focuses on the three core aspects of ElGamal cryptography: key generation, encryption, and decryption. Users can generate ElGamal keys of varying sizes by specifying the number of bits, and view these keys in multiple formats, including raw integers, hexadecimal, and Base64 encoding. This flexibility facilitates seamless integration of the keys into different systems and applications, making the tool invaluable for both educational purposes and practical implementations.
Additionally, the application allows users to encrypt and decrypt data using the generated ElGamal keys, providing a comprehensive demonstration of how this cryptographic scheme secures information. The GUI simplifies the process of managing and visualizing encrypted and decrypted data, helping users understand the effectiveness of ElGamal encryption in maintaining data confidentiality. By combining these functionalities within an intuitive interface, the project not only illustrates key cryptographic concepts but also offers a hands-on approach to learning and applying ElGamal encryption in real-world scenarios.
In chapter one, we developed a project which aims to create an intuitive graphical user interface (GUI) for generating and displaying ElGamal encryption keys using the Tkinter library. Users can specify the number of bits for key generation and view the keys in multiple formats, including raw integers, hexadecimal, and Base64 encoding. This flexibility ensures compatibility with various systems and applications, making it easier for users to integrate and verify cryptographic keys. The application features a tabbed interface that organizes the key generation process. Users can enter the desired key size in one tab and generate the keys with a button click. The keys are then displayed in separate tabs according to their format. This structured approach simplifies the comparison and verification of keys in different representations, enhancing the usability and effectiveness of the key management process.
In chapter two, the fifth project integrates ElGamal encryption and decryption techniques into a user-friendly application for securing sensitive data, such as credit card numbers and transaction details. The application generates synthetic datasets to demonstrate these cryptographic methods in action, allowing users to create keys, encrypt data, and decrypt it to verify integrity and confidentiality.Built with Tkinter, the application provides an interactive experience with an intuitive graphical interface. Users can specify key generation parameters, generate synthetic transaction data, and view the original, encrypted, and decrypted data through a series of tabs. This design facilitates easy visualization of encryption and decryption effects, making the application a practical tool for understanding and experimenting with cryptographic operations.
In chapter two, the ninth project involves developing a Tkinter-based GUI to demonstrate the ElGamal encryption algorithm using synthetic employee data. The application provides an intuitive platform for generating, encrypting, and decrypting data, while also visualizing results through interactive graphs. Users can manage data with multiple tabs for setup, original, encrypted, and decrypted views, and utilize matplotlib for visualizing data distributions and trends. By integrating data management, encryption, and visualization, the project offers a comprehensive tool for understanding and applying the ElGamal algorithm in a secure and user-friendly manner.
In chapter three, the fourth project is designed to process Bitcoin transactions using the ElGamal encryption scheme. It features a comprehensive approach that includes generating, encrypting, decrypting, and analyzing Bitco

Dettagli down

Generi Informatica e Web » Linguaggi e Applicazioni » Scienza dei calcolatori

Editore Balige Publishing

Formato Ebook (senza DRM)

Pubblicato 01/09/2024

Lingua Inglese

EAN-13 1230008310897

0 recensioni dei lettori  media voto 0  su  5

Scrivi una recensione per "ELGAMAL CRYPTOSYSTEM KEY GENERATION, ENCRYPTION, DECRYPTION, AND DIGITAL SIGNATURES: LEARN BY EXAMPLES WITH PYTHON AND TKINTER"

ELGAMAL CRYPTOSYSTEM KEY GENERATION, ENCRYPTION, DECRYPTION, AND DIGITAL SIGNATURES: LEARN BY EXAMPLES WITH PYTHON AND TKINTER
 

Accedi o Registrati  per aggiungere una recensione

usa questo box per dare una valutazione all'articolo: leggi le linee guida
torna su Torna in cima