Mondadori Store

Trova Mondadori Store

Benvenuto
Accedi o registrati

lista preferiti

Per utilizzare la funzione prodotti desiderati devi accedere o registrarti

Vai al carrello
 prodotti nel carrello

Totale  articoli

0,00 € IVA Inclusa

Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI

Vivian Siahaan
pubblicato da BALIGE PUBLISHING

Prezzo online:
0,00

In this book, implement deep learning on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries.

In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Here's an overview of the steps involved in detecting face masks using the Face Mask Detection Dataset: Import the necessary libraries: Import the required libraries like TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Load and preprocess the dataset: Load the dataset and perform any necessary preprocessing steps, such as resizing images and converting labels into numeric representations.; Split the dataset: Split the dataset into training and testing sets using the train_test_split function from Scikit-Learn. This will allow us to evaluate the model's performance on unseen data.; Data augmentation (optional): Apply data augmentation techniques to artificially increase the size and diversity of the training set. Techniques like rotation, zooming, and flipping can help improve the model's generalization.; Build the model: Create a Convolutional Neural Network (CNN) model using TensorFlow and Keras. Design the architecture of the model, including the number and type of layers.; Compile the model: Compile the model by specifying the loss function, optimizer, and evaluation metrics. This prepares the model for training. Train the model: Train the model on the training dataset. Adjust the hyperparameters, such as the learning rate and number of epochs, to achieve optimal performance.; Evaluate the model: Evaluate the trained model on the testing dataset to assess its performance. Calculate metrics such as accuracy, precision, recall, and F1 score.; Make predictions: Use the trained model to make predictions on new images or video streams. Apply the face mask detection algorithm to identify whether a person is wearing a mask or not.; Visualize the results: Visualize the predictions by overlaying bounding boxes or markers on the images or video frames to indicate the presence or absence of face masks.

In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). To classify weather using the Multi-class Weather Dataset from Kaggle, you can follow these general steps: Load the dataset: Use libraries like Pandas or NumPy to load the dataset into memory. Explore the dataset to understand its structure and the available features.; Preprocess the data: Perform necessary preprocessing steps such as data cleaning, handling missing values, and feature engineering. This may include resizing images (if the dataset contains images) or encoding categorical variables.; Split the data: Split the dataset into training and testing sets. The training set will be used to train the model, and the testing set will be used for evaluating its performance.; Build a model: Utilize TensorFlow and Keras to define a suitable model architecture for weather classification. The choice of model depends on the type of data you have. For image data, convolutional neural networks (CNNs) often work well.; Train the model: Train the model using the training data. Use appropriate training techniques like gradient descent and backpropagation to optimize the model's weights.; Evaluate the model: Evaluate the trained model's performance using the testing data. Calculate metrics such as accuracy, precision, recall, or F1-score to assess how well the model performs.; Fine-tune the model: If the model's performance is not satisfactory, you can experiment with different hyperparameters, architec

Dettagli down

Generi Informatica e Web » Linguaggi e Applicazioni » Scienza dei calcolatori

Editore Balige Publishing

Formato Ebook con Adobe DRM

Pubblicato 29/05/2021

Lingua Inglese

EAN-13 1230004813859

0 recensioni dei lettori  media voto 0  su  5

Scrivi una recensione per "Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI"

Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI
 

Accedi o Registrati  per aggiungere una recensione

usa questo box per dare una valutazione all'articolo: leggi le linee guida
torna su Torna in cima