Mondadori Store

Trova Mondadori Store

Benvenuto
Accedi o registrati

lista preferiti

Per utilizzare la funzione prodotti desiderati devi accedere o registrarti

Vai al carrello
 prodotti nel carrello

Totale  articoli

0,00 € IVA Inclusa

Privacy Preservation in IoT: Machine Learning Approaches - Youyang Qu - Longxiang Gao - Shui Yu - Yong Xiang
Privacy Preservation in IoT: Machine Learning Approaches - Youyang Qu - Longxiang Gao - Shui Yu - Yong Xiang

Privacy Preservation in IoT: Machine Learning Approaches

Youyang Qu - Longxiang Gao - Shui Yu - Yong Xiang
pubblicato da Springer Nature Singapore

Prezzo online:
51,47
57,19
-10 %
57,19

This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.

The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions.

Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates.

Dettagli down

0 recensioni dei lettori  media voto 0  su  5

Scrivi una recensione per "Privacy Preservation in IoT: Machine Learning Approaches"

Privacy Preservation in IoT: Machine Learning Approaches
 

Accedi o Registrati  per aggiungere una recensione

usa questo box per dare una valutazione all'articolo: leggi le linee guida
torna su Torna in cima